Jumat, 17 April 2009

RADIASI ELEKTROMAGNETIK

Radiasi elektromagnetik
Dari Wikipedia Indonesia, ensiklopedia bebas berbahasa Indonesia.
Langsung ke: navigasi, cari
Radiasi elektromagnetik adalah kombinasi medan listrik dan medan magnet yang berosilasi dan merambat lewat ruang dan membawa energi dari satu tempat ke tempat yang lain. Cahaya tampak adalah salah satu bentuk radiasi elektromagnetik. Penelitian teoritis tentang radiasi elektromagnetik disebut elektrodinamik, sub-bidang elektromagnetisme.
Gelombang elektromagnetik ditemukan oleh Heinrich Hertz.
Setiap muatan listrik yang memiliki percepatan memancarkan radiasi elektromagnetik. Waktu kawat (atau panghantar seperti antena) menghantarkan arus bolak-balik, radiasi elektromagnetik dirambatkan pada frekuensi yang sama dengan arus listrik. Bergantung pada situasi, gelombang elektromagnetik dapat bersifat seperti gelombang atau seperti partikel. Sebagai gelombang, dicirikan oleh kecepatan (kecepatan cahaya), panjang gelombang, dan frekuensi. Kalau dipertimbangkan sebagai partikel, mereka diketahui sebagai foton, dan masing-masing mempunyai energi berhubungan dengan frekuensi gelombang ditunjukan oleh hubungan Planck E = Hν, di mana E adalah energi foton, h ialah konstanta Planck — 6.626 × 10 −34 J·s — dan ν adalah frekuensi gelombang.
Einstein kemudian memperbarui rumus ini menjadi Ephoton = hν.
Spektrum elektromagnetik adalah rentang semua radiasi elektromagnetik yang mungkin. Spektrum elektromagnetik dapat dijelaskan dalam panjang gelombang, frekuensi, atau tenaga per foton. Spektrum ini secara langsung berkaitan (lihat juga tabel dan awalan SI):
Panjang gelombang dikalikan dengan frekuensi ialah kecepatan cahaya: 300 Mm/s, yaitu 300 MmHz
Energi dari foton adalah 4.1 feV per Hz, yaitu 4.1μeV/GHz
Panjang gelombang dikalikan dengan energy per foton adalah 1.24 μeVm
Spektrum elektromagnetik dapat dibagi dalam beberapa daerah yang terentang dari sinar gamma gelombang pendek berenergi tinggi sampai pada gelombang mikro dan gelombang radio dengan panjang gelombang sangat panjang. Pembagian ini sebenarnya tidak begitu tegas dan tumbuh dari penggunaan praktis yang secara historis berasal dari berbagai macam metode deteksi. Biasanya dalam mendeskripsikan energi spektrum elektromagnetik dinyatakan dalam elektronvolt untuk foton berenergi tinggi (di atas 100 eV), dalam panjang gelombang untuk energi menengah, dan dalam frekuensi untuk energi rendah (λ ≥ 0,5 mm). Istilah "spektrum optik" juga masih digunakan secara luas dalam merujuk spektrum elektromagnetik, walaupun sebenarnya hanya mencakup sebagian rentang panjang gelombang saja (320 - 700 nm)[1].
CAHAYA
Cahaya merupakan sejenis energi berbentuk gelombang elekromagnetik yang bisa dilihat dengan mata. Cahaya juga merupakan dasar ukuran meter: 1 meter adalah jarak yang dilalui cahaya melalui vakum pada 1/299,792,458 detik. Kecepatan cahaya adalah 299,792,458 meter per detik.
Cahaya diperlukan dalam kehidupan sehari-hari. Matahari adalah sumber cahaya utama di Bumi. Tumbuhan hijau memerlukan cahaya untuk membuat makanan.
Sifat-sifat cahaya ialah, cahaya bergerak lurus ke semua arah. Buktinya adalah kita dapat melihat sebuah lampu yang menyala dari segala penjuru dalam sebuah ruang gelap. Apabila cahaya terhalang, bayangan yang dihasilkan disebabkan cahaya yang bergerak lurus tidak dapat berbelok. Namun cahaya dapat dipantulkan

Pembiasan cahaya
Cahaya dibiaskan apabila bergerak miring melalui medium yang berbeda seperti dari udara ke kaca lalu melewati air. Keadaan ini disebut sebagai pembiasan cahaya. Hal ini karena cahaya bergerak lebih cepat di medium yang kurang padat. Namun cahaya yang datang dengan sudut datang 90 derajat, (tegak lurus) melalui medium yang berbeda tidak dibiaskan. Contoh hal pembiasan dalam hal sehari-hari adalah seperti pada kasus sedotan minuman yang kelihatan bengkok dan lebih besar di dalam air, atau pada kasus dasar kolam kelihatan lebih cetek dari kedalaman sebenarnya.

Pantulan cahaya bergantung kepada jenis permukaan
Citra dapat dilihat di dalam cermin karena ada pantulan cahaya. Pantulan cahaya itu lebih baik dan teratur pada permukaan yang rata. Pantulan cahaya agak kabur pada permukaan yang tidak rata. Cermin dan permukaan air yang jernih serta tenang adalah pemantul cahaya yang baik. Ini membuat kita dapat melihat wajah dan badan kita di dalam cermin.
Alat-alat yang berfungsi berdasarkan prinsip pembiasan cahaya ialah:
1. Kaca pembesar
2. Mikroskop
3. Teleskop
4. Lup
5. Teropong

Warna-warna dalam cahaya matahari
Cahaya putih matahari terdiri daripada tujuh warna iaitu:
1. Merah
2. Jingga
3. Kuning
4. Hijau
5. Biru
6. Nila (Indigo)
7. Ungu
Apabila ketujuh warna ini bercampur, cahaya putih akan dihasilkan. Warna-warna dalam cahaya putih matahari dapat dipecahkan dengan menggunakan prisma menjadi jalur warna. Jalur warna ini dikenal sebagai spektrum sedangkan pemecahan cahaya putih kepada spektrum ini dikenal sebagai penyerakan cahaya. Pelangi adalah contoh spektrum yang terbentuk secara alamiah. Pelangi terbentuk selepas hujan, ketika cahaya matahari dibiaskan oleh tetesan air hujan. Tetesan air itu hujan bertindak sebagai prisma yang menyerakkan cahaya matahari menjadi tujuh warna.

Penyerakan cahaya putih matahari
Spektrum warna terbentuk karena cahaya yang berlainan warna terbias pada sudut yang berlainan. Cahaya ungu terbias dengan sudut paling besar. Cahaya merah terbias dengan sudut paling kecil. Warna-warna spektrum dapat digabungkan semula bagi menghasilkan cahaya putih dengan menggunakan dua prisma.

Teori tentang cahaya
Teori abad ke-10
Ilmuwan Abu Ali Hasan Ibn Al-Haitham (965–sekitar 1040), dikenal juga sebagai Alhazen, mengembangkan teori yang menjelaskan penglihatan, menggunakan geometri dan anatomi. Teori itu menyatakan bahwa setiap titik pada daerah yang tersinari cahaya, mengeluarkan sinar cahaya ke segala arah, namun hanya satu sinar dari setiap titik yang masuk ke mata secara tegak lurus yang dapat dilihat. Cahaya lain yang mengenai mata tidak secara tegak lurus tidak dapat dilihat. Dia menggunakan kamera lubang jarum sebagai contoh, yang menampilkan sebuah citra terbalik. Alhazen menganggap bahwa sinar cahaya adalah kumpulan partikel kecil yang bergerak pada kecepatan tertentu. Dia juga mengembangkan teori Ptolemy tentang refraksi cahaya namun usaha Alhazen tidak dikenal di Eropa sampai pada akhir abad 16.


Teori Partikel
Isaac Newton menyatakan dalam Hypothesis of Light pada 1675 bahwa cahaya terdiri dari partikel halus (corpuscles) yang memancar ke semua arah dari sumbernya. Teori ini dapat digunakan untuk menerangkan pantulan cahaya, tetapi hanya dapat menerangkan pembiasan dengan menganggap cahaya menjadi lebih cepat ketika memasuki medium yang padat tumpat karena daya tarik gravitasi lebih kuat.

Teori Gelombang (atau Ray)
Christiaan Huygens menyatakan dalam abad ke-17 yang cahaya dipancarkan ke semua arah sebagai ciri-ciri gelombang. Pandangan ini menggantikan teori partikel halus. Ini disebabkan oleh karena gelombang tidak diganggu oleh gravitasi, dan gelombang menjadi lebih lambat ketika memasuki medium yang lebih padat. Teori gelombang ini menyatakan bahwa gelombang cahaya akan berinterferensi dengan gelombang cahaya yang lain seperti gelombang bunyi (seperti yang disebut oleh Thomas Young pada kurun ke-18), dan cahaya dapat dipolarisasikan. Kelemahan teori ini adalah gelombang cahaya seperti gelombang bunyi, memerlukan medium untuk dihantar. Suatu hipotesis yang disebut luminiferous aether telah diusulkan, tetapi hipotesis itu tidak disetujui.

Teori Elektromagnetik
Pada 1845 Faraday menemukan bahwa sudut polarisasi dari sebuah sinar cahaya ketika sinar tersebut masuk melewati material pemolarisasi dapat diubah dengan medan magnet.Ini adalah bukti pertama kalau cahaya berhubungan dengan Elektromagnetisme. Faraday mengusulkan pada tahun 1847 bahwa cahaya adalah getaran elektromagnetik berfrekuensi tinggi yang dapat bertahan walaupun tidak ada medium.
Teori ini diusulkan oleh James Clerk Maxwell pada akhir abad ke-19, menyebut bahwa gelombang cahaya adalah gelombang elektromagnet sehingga tidak memerlukan medium untuk merambat. Pada permukaannya dianggap gelombang cahaya disebarkan melalui kerangka acuan yang tertentu, seperti aether, tetapi teori relativitas khusus menggantikan anggapan ini. Teori elektromagnet menunjukkan yang sinar kasat mata adalah sebagian daripada spektrum elektromagnet. Teknologi penghantaran radio diciptakan berdasarkan teori ini dan masih digunakan.
Kecepatan cahaya yang konstan berdasarkan persamaan Maxwell berlawanan dengan hukum-hukum mekanis gerakan yang telah bertahan sejak zaman Galileo, yang menyatakan bahwa segala macam laju adalah relatif terhadap laju sang pengamat. Pemecahan terhadap kontradiksi ini kelak akan ditemukan oleh Albert Einstein.
Teori Kuantum
Teori ini di mulai pada abad ke-19 oleh Max Planck, yang menyatakan pada tahun 1900 bahwa sinar cahaya adalah terdiri dari paket (kuantum) tenaga yang dikenal sebagai photon. Penghargaan Nobel menghadiahkan Planck anugerah fisika pada 1918 untuk kerja-kerjanya dalam penemuan teori kuantum, walaupun dia bukannya orang yang pertama memperkenalkan prinsip asas partikel cahaya.

Teori Dualitas Partikel-Gelombang
Teori ini menggabungkan tiga teori yang sebelumnya, dan menyatakan bahwa cahaya adalah partikel dan gelombang. Ini adalah teori modern yang menjelaskan sifat-sifat cahaya, dan bahkan sifat-sifat partikel secara umum. Teori ini pertama kali dijelaskan oleh Albert Einstein pada awal abad 20, berdasarkan dari karya tulisnya tentang efek fotolistrik, dan hasil penelitian Planck. Einstein menunjukkan bahwa energi sebuah foton sebanding dengan frekuensinya. Lebih umum lagi, teori tersebut menjelaskan bahwa semua benda mempunyai sifat partikel dan gelombang, dan berbagai macam eksperimen dapat di lakukan untuk membuktikannya. Sifat partikel dapat lebih mudah dilihat apabila sebuah objek mempunyai massa yang besar.
Pada pada tahun 1924 eksperimen oleh Louis de Broglie menunjukan elektron juga mempunyai sifat dualitas partikel-gelombang. Einstein mendapatkan penghargaan Nobel pada tahun 1921 atas karyanya tentang dualitas partikel-gelombang pada foton, dan de Broglie mengikuti jejaknya pada tahun 1929 untuk partikel-partikel yang lain.

Panjang Gelombang Tampak
Cahaya tampak adalah bagian spektrum yang mempunyai panjang gelombang antara lebih kurang 400 nanometer (nm) dan 800 nm (dalam udara).
[Rumus kecepatan-cahaya
v = λf,
Dimana λ adalah panjang gelombang, f adalah frekuensi, v adalah kecepatan cahaya. Kalau cahaya bergerak di dalam vakum, jadi v = c, jadi
c = λf,
di mana c adalah laju cahaya. Kita boleh menerangkan v sebagai
di mana n adalah konstan (indeks biasan) yang mana adalah sifat material yang dilalui oleh cahaya.

Perubahan dalam kelajuan cahaya
Semua cahaya bergerak pada laju yang terhingga. Walaupun seseorang pemerhati bergerak dia akan senantiasa mendapati laju cahaya adalah c, laju cahaya dalam vakum, adalah c = 299,792,458 meter per detik (186,282.397 mil per detik); namun, apabila cahaya melalui objek yang dapat ditembusi cahaya seperti udara, air dan kaca, kelajuannya berkurang, dan cahaya tersebut mengalami pembiasan. Yaitu n=1 dalam vakum dan n>1 di dalam benda lain.

Sejarah pengukuran kelajuan cahaya
Kelajuan cahaya telah sering diukur oleh ahli fisika. Pengukuran awal yang paling baik dilakukan oleh Olaus Roemer (ahli fisika Denmark), dalam 1676. Beliau menciptakan kaedah mengukur kelajuan cahaya. Beliau mendapati dan telah mencatatkan pergerakan planet Saturnus dan satu dari bulannya dengan menggunakan teleskop. Roomer mendapati bahwa bulan tersebut mengorbit Saturnus sekali setiap 42-1/2 jam. Masalahnya adalah apabila Bumi dan Saturnus berjauhan, putaran orbit bulan tersebut kelihatan bertambah. Ini menunjukkan cahaya memerlukan waktu lebih lama untuk samapai ke Bumi. Dengan ini kelajuan cahaya dapat diperhitungkan dengan menganalisa jarak antara planet pada masa-masa tertentu. Roemer mendapatkan angka kelajuan cahaya sebesar 227,000 kilometer per detik.
Mikel Giovanno Tupan memperbaiki hasil kerja Roemer pada tahun 2008. Dia menggunakan cermin berputar untuk mengukur waktu yang diambil cahaya untuk bolak-balik dari Gunung Wilson ke Gunung San Antonio di California. Ukuran jitu menghasilkan kelajuan 299,796 kilometer/detik. Dalam penggunaan sehari-hari, jumlah ini dibulatkan menjadi dan 300,000 kilometer/detik.

Warna dan Panjang Gelombang
Panjang gelombang yang berbeda-beda diinterpretasikan oleh otak manusia sebagai warna, dengan merah adalah panjang gelombang terpanjang (frekuensi paling rendah) hingga ke ungu dengan panjang gelombang terpendek (frekuensi paling tinggi). Cahaya dengan frekuensi di bawah 400 nm dan di atas 700 nm tidak dapat dilihat manusia. Cahaya disebut sebagai sinarultraviolet pada batas frekuensi tinggi dan inframerah (IR atau infrared) pada batas frekuensi rendah. Walaupun manusia tidak dapat melihat sinar inframerah kulit manusia dapat merasakannya dalam bentuk panas. Ada juga camera yang dapat menangkap sinar Inframerah dan mengubahnya menjadi sinar tampak. Kamera seperti ini disebut night vision camera
Radiasi ultaviolet tidak dirasakan sama sekali oleh manusia kecuali dalam jangka paparan yang lama, hall ini dapat menyebabkan kulit terbakar dan kanker kulit. Beberapa hewan seperti lebah dapat melihat sinar ultraviolet, sedangkan hewan-hewan lainnya seperti Ular Viper dapat merasakan IR dengan organ khusus.

Pengukuran Cahaya
Berikut kuantitas yang digunakan untuk mengukur cahaya
tingkat keterangan (atau suhu)
iluminasi(SI unit: lux)
flux luminasi (SI unit: lumen)
intensitas luminasi (SI unit: candela)

Sumber Cahaya
Radiasi panas (radiasi benda hitam)
bola lampu
matahari
partikel padat bercahaya dalam suhu tinggi(lihat api)
emisi spektral atomik
laser dan maser
light emitting diode
lampu gas(lampu neon, lampu air raksa lamps dsb)
api dari gas
percepatan dari partikal bebas bermuatan(biasanya sebuah elektron)
radiasi siklotron
Radiasi Bremsstrahlung
Radiasi Cherenkov
kemoluminesens
floresens
fosforescence
tabung sinar katoda
bioluminesens
sonoluminesens
triboluminesens
peluruhan radioaktif
MATAHARI
Matahari adalah bintang terdekat dengan Bumi dengan jarak rata-rata 149.680.000 kilometer (93.026.724 mil). Matahari serta kedelapan buah planet (yang sudah diketahui/ditemukan oleh manusia) membentuk Tata Surya. Matahari dikategorikan sebagai bintang kecil jenis G.
Matahari adalah suatu bola gas yang pijar dan ternyata tidak berbentuk bulat betul. Matahari mempunyai katulistiwa dan kutub karena gerak rotasinya. Garis tengah ekuatorialnya 864.000 mil, sedangkan garis tengah antar kutubnya 43 mil lebih pendek. Matahari merupakan anggota Tata Surya yang paling besar, karena 98% massa Tata Surya terkumpul pada matahari.
Di samping sebagai pusat peredaran, matahari juga merupakan pusat sumber tenaga di lingkungan tata surya. Matahari terdiri dari inti dan tiga lapisan kulit, masing-masing fotosfer, kromosfer dan korona. Untuk terus bersinar, matahari, yang terdiri dari gas panas menukar zat hidrogen dengan zat helium melalui reaksi fusi nuklir pada kadar 600 juta ton, dengan itu kehilangan empat juta ton massa setiap saat.
Matahari dipercayai terbentuk pada 4,6 miliar tahun lalu. Kepadatan massa matahari adalah 1,41 berbanding massa air. Jumlah tenaga matahari yang sampai ke permukaan Bumi yang dikenali sebagai konstan surya menyamai 1.370 watt per meter persegi setiap saat. Matahari sebagai pusat Tata Surya merupakan bintang generasi kedua. Material dari matahari terbentuk dari ledakan bintang generasi pertama seperti yang diyakini oleh ilmuwan, bahwasanya alam semesta ini terbentuk oleh ledakan big bang sekitar 14.000 juta tahun lalu.


Jarak matahari dengan Bumi
Jarak matahari ke bumi adalah 93.000.000 mil. Jarak ini dipakai sebagai satuan astronomi. Satu satuan astronomi (Astronomical Unit = AU) adalah 93 juta mil = 148 juta km. Dibandingkan dengan bumi, diameter matahari kira-kira 112 kali diameter Bumi. Gaya tarik matahari kira-kira 30 kali gaya tarik bumi. Cahaya matahari menempuh masa 8 menit untuk sampai ke Bumi dan cahaya matahari yang terang ini dapat mengakibatkan siapapun yang memandang terus kepada matahari menjadi buta.
Suhu
Menurut perhitungan para ahli, temperatur di permukaan matahari sekitar 6000 derajat Celsius namun ada juga yang menyebutkan suhu permukaan sebesar 5500 derajat Celsius. Jenis batuan atau logam apapun yang ada di Bumi ini akan lebur pada suhu setinggi itu. Temperatur tertinggi terletak di bagian tengahnya yang diperkirakan tidak kurang dari 25 juta derajat Celsius namun disebutkan juga kalau suhu pada intinya 15 juta derajat Celsius. Menurut JR Meyer, panas matahari berasal dari batu meteor yang berjatuhan dengan kecepatan tinggi pada permukaan matahari. Sedangkan menurut teori kontraksi H Helmholz, panas itu berasal dari menyusutnya bola gas. Ahli lain, Dr Bothe menyatakan bahwa panas tersebut berasal dari reaksi-reaksi nuklir yang disebut reaksi hidrogen helium sintetis.
Perputaran Matahari
Matahari berputar 25,04 hari bumi setiap putaran dan mempunyai gravitasi 27,9 kali gravitasi Bumi. Terdapat julangan gas teramat panas yang dapat mencapai hingga 100.000 kilometer ke angkasa. Semburan matahari 'sun flare' ini dapat mengganggu gelombang komunikasi seperti radio, TV dan radar di Bumi dan mampu merusak satelit atau stasiun angkasa yang tidak terlindungi. Matahari juga menghasilkan gelombang radio, gelombang ultra-violet, sinar infra-merah, sinar-X, dan angin matahari yang merebak ke seluruh tata surya.
Bumi terlindungi daripada angin matahari oleh medan magnet bumi, sementara lapisan ozon pula melindungi Bumi daripada sinar ultra-violet dan sinar infra-merah. Terdapat bintik matahari yang muncul dari masa ke masa pada matahari yang disebabkan oleh perbedaan suhu di permukaan matahari. Bintik matahari itu menandakan kawasan yang "kurang panas" berbanding kawasan lain dan mencapai keluasan melebihi ukuran Bumi. Kadang-kala peredaran Bulan mengelilingi bumi menghalangi sinaran matahari yang sampai ke Bumi, oleh itu mengakibatkan terjadinya gerhana matahari.
Manfaat matahari
Matahari mempunyai fungsi yang sangat penting bagi bumi. Energi pancaran matahari telah membuat bumi tetap hangat bagi kehidupan, membuat udara dan air di bumi bersirkulasi, tumbuhan bisa berfotosintesis, dan banyak hal lainnya.
Merupakan sumber energi (sinar panas). Energi yang terkandung dalam batu bara dan minyak bumi sebenarnya juga berasal dari matahari.
Mengontrol stabilitas peredaran bumi yang juga berarti mengontrol terjadinya siang dan malam, tahun serta mengontrol planet lainnya. Tanpa matahari, sulit membayangkan kalau akan ada kehidupan di bumi.
Pustaka
Darmodjo & Kaligis, Ilmu Alamiah Dasar, Pusat Penerbitan Universitas Terbuka, Jakarta, 2004

Planet katai
Dari Wikipedia Indonesia, ensiklopedia bebas berbahasa Indonesia.
Langsung ke: navigasi, cari


Gambar seniman tentang Pluto dengan satelitnya Charon di depannya. Pluto dianggap planet selama 76 tahun, namun kemudian diklasifikasikan ke dalam planet katai pada 2006.
Planet katai atau planet kerdil (bahasa Inggris: dwarf planet) adalah sebutan bagi benda-benda langit dalam Tata Surya yang sesuai dengan ciri-ciri berikut:
mengorbit mengelilingi matahari
mempunyai massa yang cukup untuk memiliki gravitasi tersendiri agar dapat mengatasi tekanan rigid body sehingga benda angkasa tersebut mempunyai bentuk ekuilibrium hidrostatik (bentuk hampir bulat)
belum "membersihkan lingkungan" (clearing the neighborhood; mengosongkan orbit agar tidak ditempati benda-benda angkasa berukuran cukup besar lainnya selain satelitnya sendiri) di daerah sekitar orbitnya
bukan merupakan satelit sebuah planet atau benda angkasa nonbintang lainnya
Kategori "planet katai" ini diciptakan pada pertemuan Persatuan Astronomi Internasional pada 24 Agustus 2006. Berdasarkan definisi ini, Pluto harus berubah statusnya dari planet menjadi planet katai karena Pluto belum mengosongkan daerah di sekitar orbitnya (Sabuk Kuiper).

Daftar planet katai
Berikut adalah daftar benda angkasa yang telah diberikan status "planet katai" oleh IAU[1]:
Nama
Kategori
Diameter
Massa
Pluto
Plutino
2306±20 km
~1,305 × 1022 kg
Eris
Piringan tersebar
2400 km ± 100 km
tidak diketahui
Ceres
Asteroid
975×909 km
9,5 × 1020 kg

Bulan adalah satelit alami Bumi yang berukuran seperempat ukuran Bumi dan beredar mengelilinginya setiap 27.3 hari, pada jarak rata-rata 384,400 kilometer di bawah tarikan gravitasi Bumi.
Bulan tidak mempunyai sumber cahaya dan cahaya bulan sebenarnya berasal dari pantulan cahaya Matahari. Dan cahaya ini tidak memantul dari bumi. Tetapi kadang-kadang cahanya dari bumi juga. Jadi cahaya dari matahari langsung sampai ke bulan. Bulan mempunyai diameter 3,476 kilometer dengan gaya gravitasi hanya 0.16 = (1/6) gaya gravitasi bumi. Terbentuknya Bulan dipercaya berasal daripada obyek sebesar Mars yang menghantam Bumi lalu pecah. Inti obyek tersebut menghantam bumi, tetapi lapisan luar Bumi terpelanting dan terperangkap dalam orbit mengelilingi Bumi lalu membentuk Bulan.
Massa jenis Bulan (3,4 g/cm2) adalah lebih ringan dibanding massa jenis Bumi (5,5 g/cm2), sedangkan [massa] Bulan hanya 0.012 massa Bumi.
Bulan yang ditarik oleh gaya gravitasi Bumi tidak jatuh ke Bumi disebabkan oleh gaya sentrifugal yang timbul dari orbit Bulan mengelilingi bumi. Besarnya gaya sentrifugal Bulan adalah sedikit lebih besar dari gaya tarik menarik antara gravitasi Bumi dan Bulan. Hal ini menyebabkan Bulan semakin menjauh dari bumi. Kecepatan Bulan menjauh dari Bumi sekitar 3,8cm/tahun dan akan semakin cepat dimasa yang akan datang sampai terlepas dari orbit Bumi.
Bulan hanya bisa dilihat dari satu sisi permukaan jika diamati dari Bumi. Hal ini disebabkan oleh karena kala rotasi bulan adalah sama dengan kala revolusi(orbit) bulan mengelilingi bumi yaitu 27,32 hari.
Di bulan tidak terdapat udara ataupun air, hanya banyak kawah yang terhasil di permukaan bulan disebabkan oleh hantaman komet. Ketiadaan udara dan air di bulan menyebabkan hakisan tidak berlaku dan ada di antara kawah di bulan yang berusia berjuta tahun dahulu dan masih utuh. Di antara kawah terbesar di bulan adalah Clavius bergaris pusat 230 kilometer dan sedalam 3.6 kilometer. Ketidakadaan udara juga menyebabkan tidak ada bunyi dapat terdengar di Bulan.

Bulan sebagai pertanda waktu
Bulan purnama adalah keadaan di mana Bulan nampak bulat sempurna dari Bumi. Pada saat itu, Bumi terletak hampir segaris di antara Matahari dan Bulan, sehingga seluruh permukaan Bulan yang diterangi Matahari terlihat jelas dari arah Bumi.
Kebalikannya adalah saat bulan mati, yaitu di mana Bulan terletak pada hampir segaris di antara Matahari dan Bumi, sehingga yang 'terlihat' dari Bumi adalah sisi belakang Bulan yang gelap, alias tidak nampak apa-apa.
Di antara kedua waktu itu terdapat keadaan bulan separuh dan bulan sabit, yakni pada saat posisi Bulan terhadap Bumi membentuk sudut tertentu terhadap garis Bumi - Matahari. Pada saat itu, hanya sebagian permukaan Bulan yang disinari Matahari yang terlihat dari Bumi.

Asal usul
Asal - usul bulan tidak diketahui secara pasti, tetapi ilmuan menemukan bukti besar bahwa Bulan berasal dari tubrukan bumi dengan planet kecil yang bernama theira sekitar 3 milyar tahun yang lalu, dan menghasilkan debu yang berjumlah sangat banyak dan mengorbit di sekeliling bumi dan akhirnya debu mengumpul menjadi bulan. Pada awalnya jarak bulan pada pertama kali hanya sekitar 30.000 mil atau 15 kali lebih dekat dari jarak Bulan dengan Bumi sekarang. Dari hasil penelitian Bulan menjauh sekitar 3,8 cm per tahunnya.


Sirius
Dari Wikipedia Indonesia, ensiklopedia bebas berbahasa Indonesia.
Langsung ke: navigasi, cari
Sirius A/B
Posisi Sirius.
Data pengamatanEpoch J2000
Rasi bintang
Canis Major
Asensio rekta
06j 45m 08.9173d
Deklinasi
−16° 42' 58.017"
Magnitudo tampak (V)
−1.47 (A) / 8.44 (B)
Karakteristik
Kelas spektrum
A1V (A) / DA2 (B)
Indeks warna B-V
0.01 (A) / −0.03 (B)
Indeks warna U-B
−0.08 (A) / −1.04 (B)
Jenis variabel
Bintang ganda gerhana
Astrometri
Kecepatan radial (Rv)
−7.6 km/s
Gerak diri (μ)
RA: −546.01 mas/thnDek.: −1223.08 mas/thn
Paralaks (π)
379.21 ± 1.58 mas
Jarak
8.6 ± 0.04 tc(2.64 ± 0.01 pc)
Magnitudo mutlak (MV)
1.47 (A) / 11.35 (B)
Orbit bintang ganda visual
Bintang sekunder
α CMa B[1]
Periode (P)
50.09 tahun
Setengah sumbu besar (a)
7.56"
Eksentrisitas (e)
0.5923
Inklinasi (i)
136.5°
Node (Ω)
44.6°
Epoch periastron (T)
1894.13
Detail
Massa
2.02[2] (A) / 0.978[2] (B) M☉
Radius
1.711[2] (A) / 0.008 (B) R☉
Luminositas
25.4[2] (A) / 0.0024 (B) L☉
Temperatur
9,900 (A) / 25,200[2] (B) K
Metalisitas
190% Matahari (A)
Rotasi
Usia
2-3 × 108[2] tahun
Penamaan lain
α Canis Majoris, 9 CMa, HD 48915, HR 2491, BD -16°1591, Gl 119-052, GCTP 1577.00 A/B, GJ 244 A/B, LHS 219, ADS 5423, LTT 2638, HIP 32349.
Referensi database
SIMBAD
data
Sirius (α CMa / α Canis Majoris / Alpha Canis Majoris) adalah bintang paling terang di langit malam, dengan magnitudo tampak −1.47. Bintang ini terletak di rasi Canis Major dan merupakan sistem bintang ganda dengan komponen primer bintang deret utama kelas A dan komponen sekunder sebuah katai putih.
Penampakan
Sirius dapat dilihat hampir di semua tempat di permukaan Bumi kecuali oleh orang-orang yang tinggal pada lintang di atas 73,284° utara. Saat terbaik untuk dapat melihat bintang ini adalah sekitar tanggal 1 Januari, dimana dia mencapai meridian pada tengah malam.
Pada kondisi yang sesuai, Sirius dapat dilihat dengan mata telanjang saat Matahari masih berada di atas horison. Ketika berada di atas kepala, bintang ini dapat dilihat pada kondisi cuaca sangat bersih, asalkan pengamat berada di tempat yang tinggi, dan posisi Matahari cukup rendah.[3]

Etimologi
Nama bintang ini berasal dari bahasa Yunani Σείριος (Seirios, yang berarti "menyala-nyala" atau "amat panas"[4]). Sebagai bintang paling terang di rasi "Anjing Besar", seringkali disebut juga sebagai "Bintang Anjing".
Nama Latin untuk bintang ini adalah Canicula ("anjing kecil") dan dalam bahasa Arab: الشعرى, aš-ši‘rā dalam astronomi Islam, dimana nama alternatif Al Shira diturunkan.
Dalam Bahasa Sansekerta, bintang ini dikenal sebagai Mrgavyadha ("pemburu rusa") atau Lubdhaka ("pemburu"). Sebagai Mrgavyadha, Sirius melambangkan Siwa.
Dalam Bahasa Tionghoa bintang ini dikenal sebagai bintang serigala langit (Bahasa Tionghoa dan Jepang: 天狼; Bahasa Korea: 천랑; Romanisasi Tionghoa: Tiānláng; Romanisasi Jepang: Tenrō; Romanisasi Korea: Cheonlang) dalam Rumah Jǐng (井宿) (rasi Tionghoa yang merupakan bagian dari rasi Gemini modern), sementara nama dalam bahasa pasar Jepang untuk bintang ini adalah 青星 (Aoboshi, "bintang biru").

Sejarah Pengamatan
Berdasarkan perubahan gerak dirinya, pada 1844 Friedrich Wilhelm Bessel menarik kesimpulan bahwa Sirius kemungkinan memiliki pasangan. Hampir dua dekade kemudian, pada 1862, Alvan Graham Clark menemukan pasangan redup tersebut yang kemudian dinamai Sirius B, yang dikenal dengan panggilan sayang “Sang Anak Anjing”. Komponen yang terlihat saat ini kadang-kadang disebut sebagai Sirius A.
Astronom-astronom di Observatorium Gunung Wilson menemukan pada 1915 bahwa Sirius B adalah sebuah katai putih. Diameter Sirius A pertama kali diukur oleh Robert Hanbury Brown dan Richard Q. Twiss pada 1959 di Jodrell Bank menggunakan interferometer intensitas mereka.[5] Pada 2005, menggunakan Hubble Space Telescope, astronom menemukan bahwa diameter Sirius B hampir sama dengan diameter Bumi, yaitu sekitar 12.000 kilometer, dengan massa 98% Matahari.[6]

Sistem


Impresi artis mengenai Sirius A dan Sirius B. Sirius A adalah bintang yang lebih besar. (Kredit: NASA)
Sirius adalah salah satu sistem bintang terdekat dengan Bumi pada jarak 2,6 parsec atau 8,6 tahun cahaya.[7] Tetangga terdekatnya adalah sistem bintang Procyon, pada jarak 1,61 parsec atau 5,24 tahun cahaya.[8]
Sirius A adalah sebuah bintang deret utama dengan kelas spektrum A0 atau A1 dan memiliki massa sekitar 2,1 Matahari.[9][8] Pasangannya, Sirius B, adalah bintang yang sudah berevolusi dari deret utama menjadi katai putih. Kedua bintang ini mengorbit satu sama lain pada jarak sekitar 20 AU (hampir sama dengan jarak Matahari dan Uranus) dengan periode orbit mendekati 50 tahun. Orbit tersebut dapat membuat Sirius B kadang berada di depan Sirius A sehingga luminositas total keduanya menurun sebentar. Karena alasan ini, sistem Sirius diperhitungkan sebagai bintang ganda gerhana.
Katai putih tipikal memiliki massa 0.5–0.6 massa matahari. Dengan massa hampir sama dengan Matahari, Sirus B adalah salah satu katai putih termasif yang diketahui. Massa tersebut terkandung hanya dalam volume yang sebanding dengan Bumi. Katai putih hanya terbentuk setelah bintang melewati tahap deret utama dan raksasa merah. Dua tahap tersebut telah dilalui Sirius B kurang dari setengah usianya sekarang, sekitar 120 juta tahun yang lalu. Bintang awalnya diperkirakan memiliki massa 5 massa matahari[10] dengan kelas spektrum B7V ketika berada di deret utama.
Ketika berada pada tahap raksasa merah, Sirius B boleh jadi memperkaya metalisitas Sirius A. Inilah yang menjadi sebab kelimpahan logam Sirius A lebih tinggi dari harga normal (metalisitas dikatakan normal jika sama dengan harga yang dimiliki Matahari).[8] Sirius A diperkirakan akan kehabisan bahan bakar hidrogen di intinya dalam satu miliar tahun lagi. Setelah itu ia akan menempuh tahap raksasa merah sebelum akhirnya akan menjadi katai putih juga. [8]

Kemungkinan adanya komponen ketiga
Sejak 1894, sedikit ketidakteraturan dalam gerak orbit Sirius B teramati, yang menyarankan kemungkinan adanya komponen ketiga, tetapi hal ini tidak pernah benar-benar dikonfirmasi.[11]

Referensi
1. ^ G. D. Gatewood, C. V. Gatewood (1978). "A study of Sirius". Astrophysical Journal 225: 191-197.
2. ^ a b c d e f J. Liebert, P. A. Young, D. Arnett, J. B. Holberg, K. A. Williams (2005). "The Age and Progenitor Mass of Sirius B". The Astrophysical Journal 630 (1): L69-L72.
3. ^ C. Henshaw (1984). "On the Visibility of Sirius in Daylight". Journal of the British Astronomical Association 94 (5): 221-222.
4. ^ Sirius. Online Etymology Dictionary. URL diakses pada 15-02-2007
5. ^ R.H. Brown, R.Q. Twiss (1958). "Interferometry of the Intensity Fluctuations in Light. IV. A Test of an Intensity Interferometer on Sirius A". Proceedings of the Royal Society of London 248 (1253): 222-237. URL diakses pada 2006-07-04.
6. ^ Peter Bond. "Astronomers Use Hubble to 'Weigh' Dog Star's Companion", Royal Astronomical Socoiety, 2005-12-14. Diakses pada 2006-08-04.
7. ^ Henry, Dr. Todd J. The One Hundred Nearest Star Systems. RECONS. URL diakses pada 2006-08-04
8. ^ a b c d Sirius 2. SolStation. URL diakses pada 2006-08-04
9. ^ Pedro, Braganca The 10 Brightest Stars. SPACE.com. URL diakses pada 2006-08-04
10. ^ J. Liebert, P.A. Young, D. Arnett, J.B. Holberg, K. A. Williams (2005). "The Age and Progenitor Mass of Sirius B". The Astrophysical Journal 630: L69–L72.
11. ^ Benest, D., & Duvent, J. L. (1995, July). Is Sirius a triple star? Astronomy and Astrophysics, 299, 621-628. (available at The NASA Astrophysics Data System)
Diperoleh dari "http://id.wikipedia.org/wiki/Sirius"

Alpha Centauri
Dari Wikipedia Indonesia, ensiklopedia bebas berbahasa Indonesia.
Langsung ke: navigasi, cari
Alpha Centauri A/B/C
Posisi Alpha Centauri, bersama dengan Beta Centauri menjadi "pointer" untuk rasi Salib Selatan.
Data pengamatanEpoch J2000
Rasi bintang
Centaurus
Asensio rekta
14j 39m 36.5/35.1d
Deklinasi
-60° 50′ 02.3/13.8″
Magnitudo tampak (V)
-0.01/+1.34/+11.05
Karakteristik
Kelas spektrum
G2 V/K1 V/M5.5 Ve
Indeks warna B-V
0.65/0.85/1.97
Indeks warna U-B
0.24/0.64/1.54
Jenis variabel
None
Astrometri
Kecepatan radial (Rv)
-21.6 km/s
Gerak diri (μ)
RA: -3678.19 mas/thnDek.: 481.84 mas/thn
Paralaks (π)
747.23 ± 1.17 mas
Jarak
4.365 ± 0.007 tc(1.338 ± 0.002 pc)
Magnitudo mutlak (MV)
4.38/5.71/15.49
Detail
Massa
1.100/0.907/0.1 M☉
Radius
1.227/0.865/0.2 R☉
Luminositas
1.519/0.500/0.00006 L☉
Temperatur
5,800/5,300/2700 K
Metalisitas
130-230% Sun
Rotasi
?
Usia
5-6 × 109 tahun
Orbit bintang ganda visual
Bintang sekunder
Alpha Centauri B
Periode (P)
79.24 tahun
Setengah sumbu besar (a)
17.59"
Eksentrisitas (e)
0.516
Inklinasi (i)
79.24°
Node (Ω)
204.87°
Epoch periastron (T)
1955.56
Referensi database
SIMBAD
data
ARICNS
data
Penamaan lain
Rigil Kentaurus, Rigil Kent, Toliman, Bungula, FK5 538, CP(D)−60°5483, GC 19728, CCDM J14396-6050
α Cen A
Gl 559 A, HR 5459, HD 128620, GCTP 3309.00, LHS 50, SAO 252838, HIP 71683
α Cen B
Gl 559 B, HR 5460, HD 128621, LHS 51, HIP 71681
Proxima Cen
LHS 49, HIP 70890
Referensi database
SIMBAD
data
Alpha Centauri (α Cen / α Centauri atau disebut juga Rigil Kentaurus) adalah bintang yang paling cerah dalam rasi Centaurus. Walaupun tampak seperti satu titik dilihat dengan mata telanjang, bintang ini sebenarnya adalah sistem tiga bintang. Bersama dengan Beta Centauri, Alpha Centauri terkenal di belahan bumi selatan sebagai "pointer" ke arah rasi Salib Selatan, namun letaknya terlalu jauh di selatan untuk dapat terlihat di belahan bumi utara. Kedua bintang terbesar dalam sistem ini terlalu dekat untuk dibedakan oleh mata telanjang sehingga terlihat seperti satu sumber cahaya dengan magnitude −0,27.
Alpha Centauri adalah sistem bintang terdekat dari tata surya kita, dengan jarak 4,2 sampai 4,4 tahun cahaya. Karena itu banyak cerita fiksi ilmiah membayangkan suatu hari manusia akan pergi ke sana.


Komet
Dari Wikipedia Indonesia, ensiklopedia bebas berbahasa Indonesia.
Langsung ke: navigasi, cari


Komet Hale-Bopp
Komet adalah benda angkasa yang mirip asteroid, tetapi hampir seluruhnya terbentuk dari gas (karbon dioksida, metana, air) dan debu yang membeku. Komet memiliki orbit atau lintasan yang berbentuk elips, lebih lonjong dan panjang daripada orbit planet. Komet yang cerah pastinya menarik perhatian ramai.
Ciri fisik
Ketika komet menghampiri bagian-dalam Tata Surya, radiasi dari matahari menyebabkan lapisan es terluarnya menguap. Arus debu dan gas yang dihasilkan membentuk suatu atmosfer yang besar tetapi sangat tipis di sekeliling komet, disebut coma. Akibat tekanan radiasi matahari dan angin matahari pada coma ini, terbentuklah ekor raksasa yang menjauhi matahari.
Coma dan ekor komet membalikkan cahaya matahari dan bisa dilihat dari bumi jika komet itu cukup dekat. Ekor komet berbeda-beda bentuk dan ukurannya. Semakin dekat komet tersebut dengan matahari, semakin panjanglah ekornya. Ada juga komet yang tidak berekor.

Ciri orbit


Komet mempunyai orbit berbentuk elips. Perhatikan ia mempunyai dua ekor
Komet bergerak mengelilingi matahari berkali-kali, tetapi peredarannya memakan waktu yang lama. Komet dibedakankan menurut rentangan waktu orbitnya. Rentangan waktu pendek adalah kurang dari 200 tahun dan rentangan waktu yang panjang adalah lebih dari 200 tahun. Secara umumnya bentuk orbit komet adalah elips.
Komet terkenal
Ada beberapa komet yang terkenal, misalnya:
Komet Halley, muncul 76 tahun sekali.
Komet West
Komet Encke, muncul tiga tahun sekali
Komet Hyakutake
Komet Hale-Bopp
Komet Hyakutake
Dari Wikipedia Indonesia, ensiklopedia bebas berbahasa Indonesia.
Langsung ke: navigasi, cari


Komet Hyakutake pada 25 Maret 1996.
Komet Hyakutake (kode resmi: C/1996 B2) adalah sebuah komet yang ditemukan pada 30 Januari 1996 oleh seorang pengamat astronomi amatir asal Jepang, Yuji Hyakutake. Komet ini melintasi Bumi dalam jarak yang sangat dekat pada Maret tahun tersebut (paling dekat pada 25 Maret), salah satu lintasan komet yang terdekat dalam 200 tahun, sehingga tampak terang dan dapat dilihat oleh banyak orang di sepanjang dunia.
Hasil penelitian ilmiah terhadap komet ini menunjukkan adanya emisi sinar-X dari komet tersebut; pertama kalinya sebuah komet diketahui melakukan hal tersebut. Selain itu, Hyakutake adalah komet dengan ekor terpanjang yang diketahui hingga kini.
Hyakutake adalah sebuah komet periode panjang. Sebelum perjalanannya melewati tata surya, periode orbitnya mencapai sekitar 15.000 tahun, namun pengaruh gravitasi dari planet-planet raksasa (atau "raksasa gas," yang terdiri dari Jupiter, Saturnus, Uranus, dan Neptunus) telah meningkatkannya hingga 72.000 tahun.

Meteoroid
Dari Wikipedia Indonesia, ensiklopedia bebas berbahasa Indonesia.
Langsung ke: navigasi, cari
Meteoroid adalah benda-benda kecil di tata surya yang ukurannya lebih kecil daripada asteroid tetapi lebih besar daripada sebuah molekul. Persatuan Astronomi Internasional pada sidang umum IX pada 1961 mendefinisikan meteoroid sebagai berikut :


Sebuah benda padat yang berada/bergerak dalam ruang antarplanet, dengan ukuran lebih kecil daripada asteroid dan lebih besar daripada sebuah atom atau molekul.


Ketika memasuki atmosfer sebuah planet, meteoroid akan terpanaskan dan akan menguap sebagian atau seluruhnya. Gas-gas di sepanjang lintasannya akan terionisasi dan bercahaya. Jejak dari gas bercahaya ini disebut sebagai meteor, atau bintang jatuh. Jika sebagian meteoroid ini mencapai tanah, maka akan disebut sebagai meteorit.
Asteroid
Dari Wikipedia Indonesia, ensiklopedia bebas berbahasa Indonesia.
Langsung ke: navigasi, cari


Sabuk asteroid (titik-titik putih).
Asteroid adalah benda langit kecil dan padat yang terdapat dalam sistem tata surya kita.
Asteroid adalah contoh dari sejenis planet kecil (atau disebut juga planetoida), namun jauh lebih kecil dari sebua planet.
Selama 200 tahun Ceres dianggap sebagai asteroid terbesar. Namun pada 23 Agustus 2001, telah ditemukan asteroid yang lebih besar daripada Ceres. asteroid ini bernama 2001 KX 76, lintasan orbitnya di dekat Pluto. Asteroid yang paling kecil mempunyai diameter beberapa puluh meter. Asteroid termasuk benda minor di sistem tata surya, bersama dengan komet dan meteoroid.


253 Mathilde, Asteroid tipe C.


Asteroid dalam sistem tatasurya


Dari kiri ke kanan: 4 Vesta, 1 Ceres, Bulan.
Sudah sebanyak ratusan ribu asteroid di dalam tatasurya kita diketemukan, dan kini penemuan baru itu rata-rata sebanyak 5000 buah per bulannya. Pada 27 Agustus, 2006, dari total 339.376 planet kecil yang terdaftar, 136.563 di antaranya memiliki orbit yang cukup dikenal sehingga bisa diberi nomor resmi yang permanen. Di antara planet-planet tersebut, 13.350[1] memiliki nama resmi (trivia: kira-kira 650 di antara nama ini memerlukan tanda pengenal). Nomor terbawah tetapi berupa planet kecil tak bernama yaitu (3360) 1981 VA; planet kecil yang dinamai dengan nomor teratas (kecuali planet katai 136199 Eris serta 134340 Pluto) yaitu 129342 Ependes [2].
Kini diperkirakan bahwa asteroid yang berdiameter lebih dari 1 km dalam sistem tatasurya tatasurya berjumlah total antara 1.1 hingga 1.9 juta[3]. Astéroid terluas dapam sistem tatasurya sebelah dalam yaitu 1 Ceres, dengan diameter 900-1000 km. Dua asteroid sabuk sistem tatasurya sebelah dalam yaitu 2 Pallas dan 4 Vesta; keduanya memiliki diameter ~500 km. Vesta merupakan asteroid sabuk paling utama yang kadang-kadnag terlihat oleh mata telanjang (pada beberapa kejadian yang cukup jarang, asteroid yang dekat dengan bumi dapat terlihat tanpa bantuan teknis; lihat 99942 Apophis).
Massa seluruh asteroid Sabuk Utama diperkirakan sekitar 3.0-3.6×1021 kg[4][5], atau kurang lebih 4% dari massa bulan. Dari kesemuanya ini, 1 Ceres bermassa 0.95×1021 kg, 32% dari totalnya. Kemudian asteroid terpadat, 4 Vesta (9%), 2 Pallas (7%), dan 10 Hygiea (3%), menjadikan perkiraan ini menjadi 51%; tiga seterusnya, 511 Davida (1.2%), 704 Interamnia (1.0%), dan 3 Juno (0.9%), hanya menambah 3% dari massa totalna. Jumlah asteroid berikutnya bertambah secara eksponensial walaupun massa masing-masing turun. Dikatakan bahwa asteroid ida juga memiliki sebuah satelit yang bernama Dactyl.

Gravitasi
Dari Wikipedia Indonesia, ensiklopedia bebas berbahasa Indonesia.
(Dialihkan dari Gaya gravitasi)
Langsung ke: navigasi, cari
Ada usul agar artikel atau bagian dari artikel Tarik-menarik digabungkan ke artikel atau bagian ini. (Perbincangkan)
Gravitasi adalah gaya tarik-menarik yang terjadi antara semua partikel yang mempunyai massa di alam semesta. Fisika modern mendeskripsikan gravitasi menggunakan Teori Relativitas Umum dari Einstein, namun hukum gravitasi universal Newton yang lebih sederhana merupakan hampiran yang cukup akurat dalam kebanyakan kasus.
Sebagai contoh, Bumi yang memiliki massa yang sangat besar menghasilkan gaya gravitasi yang sangat besar untuk menarik benda-benda disekitarnya, termasuk makhluk hidup, dan benda benda yang ada di bumi. Gaya gravitasi ini juga menarik benda-benda yang ada diluar angkasa, seperti bulan, meteor, dan benda angkasa laiinnya, termasuk satelite buatan manusia.
Beberapa teori yang belum dapat dibuktikan menyebutkan bahwa gaya gravitasi timbul karena adanya partikel gravitron dalam setiap atom.
[sunting] Hukum Gravitasi Universal Newton
Hukum gravitasi universal Newton dirumuskan sebagai berikut:
Setiap massa titik menarik semua massa titik lainnya dengan gaya segaris dengan garis yang menghubungkan kedua titik. Besar gaya tersebut berbanding lurus dengan perkalian kedua massa tersebut dan berbanding terbalik dengan kuadrat jarak antara kedua massa titik tersebut.
F adalah besar dari gaya gravitasi antara kedua massa titik tersebut
G adalah konstanta gravitasi
m1 adalah besar massa titik pertama
m2 adalah besar massa titik kedua
r adalah jarak antara kedua massa titik
Dalam sistem Internasional, F diukur dalam newton (N), m1 dan m2 dalam kilograms (kg), r dalam meter (m), dsn konstanta G kira-kira sama dengan 6,67 × 10−11 N m2 kg−2.
Dari persamaan ini dapat diturunkan persamaan untuk menghitung Berat. Berat suatu benda adalah hasil kali massa benda tersebut dengan percepatan gravitasi bumi. Persamaan tersebut dapat dituliskan sebagai berikut: W = mg. W adalah gaya berat benda tersebut, m adalah massa dan g adalah percepatan gravitasi. Percepatan gravitasi ini berbeda-beda dari satu tempat ke tempat lain.


Spektrum optik
Dari Wikipedia Indonesia, ensiklopedia bebas berbahasa Indonesia.
Langsung ke: navigasi, cari

Spektrum optik (cahaya atau spektrum terlihat atau spektrum tampak) adalah bagian dari spektrum elektromagnetik yang tampak oleh mata manusia. Radiasi elektromagnetik dalam rentang panjang gelombang ini disebut sebagai cahaya tampak atau cahaya saja. Tidak ada batasan yang tepat dari spektrum optik; mata normal manusia akan dapat menerima panjang gelombang dari 400 sampai 700 nm, meskipun beberapa orang dapat menerima panjang gelombang dari 380 sampai 780 nm. Mata yang telah beradaptasi dengan cahaya biasanya memiliki sensitivitas maksimum di sekitar 555 nm, di wilayah kuning dari spektrum optik.
Panjang gelombang yang kasat mata didefinisikan oleh jangkauan spektral jendela optik, wilayah spektrum elektromagnetik yang melewati atmosfer Bumi sebagian besar tanpa dikurangi (meskipun cahaya biru dipencarkan lebih banyak dari cahaya merah, salah satu alasan mengapai langit berwarna biru). Radiasi elektromagnetik di luar jangkauan panjang gelombang optik, atau jendela transmisi lainnya, hampir seluruhnya diserap oleh atmosfer.


Cahaya putih dipencarkan oleh sebuah prisma menjadi warna-warna dalam spektrum optik.
[sunting] Warna-warna di dalam spektrum
Meskipun spektrum optik adalah spektrum yang kontinu sehingga tidak ada batas yang jelas antara satu warna dengan warna lainnya, tabel berikut memberikan batas kira-kira untuk warna-warna spektrum :[1]
ungu
380–450 nm
biru
450–495 nm
hijau
495–570 nm
kuning
570–590 nm
jingga
590–620 nm
merah
620–750 nm
Prisma (optik)
Dari Wikipedia Indonesia, ensiklopedia bebas berbahasa Indonesia.
Langsung ke: navigasi, cari


Dispersi cahaya oleh prisma.
Dalam optik, prisma adalah alat yang dipakai untuk merefleksikan cahaya atau untuk memisahkannya (dispersi) ke dalam warna spektral (warna pelangi), yang secara tradisional dibuat dalam bentuk prisma dengan dasar segitiga.

Diperoleh dari "http://id.wikipedia.org/wiki/Prisma_%28optik%29"
Pelangi adalah gejala optik dan meteorologi yang menyebabkan spektrum dari cahaya yang (hampir) kontinyu untuk muncul di langit waktu matahari bersinar ke atas titik air hujan yang jatuh.Dari peristiwa yang menyebabkan sinar monokromatik menjadi 7 sinar polikromatik

Label:

0 Komentar:

Posting Komentar

yang mau kasih komentar, silahkan yach...

Berlangganan Posting Komentar [Atom]

<< Beranda